CERVELLO UMANO

HUMAN BRAIN, l'organo che coordina e regola tutte le funzioni vitali del corpo e controlla il comportamento. Tutti i nostri pensieri, sentimenti, sensazioni, desideri e movimenti sono associati al lavoro del cervello, e se non funziona, la persona entra in uno stato vegetativo: la capacità di ogni azione, sensazione o reazione alle influenze esterne è persa. Questo articolo si concentra sul cervello umano, più complesso e altamente organizzato rispetto al cervello degli animali. Tuttavia, esistono somiglianze significative nella struttura del cervello umano e di altri mammiferi, come, invero, nella maggior parte delle specie di vertebrati.

Il sistema nervoso centrale (SNC) è costituito dal cervello e dal midollo spinale. È associato a varie parti del corpo da parte dei nervi periferici - motori e sensoriali. Vedi anche SISTEMA NERVOSO.

Il cervello è una struttura simmetrica, come la maggior parte delle altre parti del corpo. Alla nascita, il suo peso è di circa 0,3 kg, mentre in un adulto è di ca. 1,5 kg. All'esame esterno del cervello, due grandi emisferi che nascondono le formazioni più profonde attirano l'attenzione. La superficie degli emisferi è coperta da scanalature e convoluzioni che aumentano la superficie della corteccia (strato esterno del cervello). Dietro il cervelletto è posto, la cui superficie è tagliata più finemente. Sotto i grandi emisferi c'è il tronco cerebrale, che passa nel midollo spinale. I nervi lasciano il tronco e il midollo spinale, lungo i quali le informazioni fluiscono dai recettori interni ed esterni al cervello e i segnali ai muscoli e alle ghiandole scorrono nella direzione opposta. 12 paia di nervi cranici si stanno allontanando dal cervello.

All'interno del cervello si distingue la materia grigia, costituita principalmente dai corpi delle cellule nervose e che formano la corteccia e la sostanza bianca - le fibre nervose che formano i percorsi conduttivi (tratti) che connettono diverse parti del cervello e formano anche i nervi che vanno oltre il sistema nervoso centrale e vanno a vari organi.

Il cervello e il midollo spinale sono protetti da casi di ossa - il cranio e la colonna vertebrale. Tra la sostanza del cervello e le pareti ossee ci sono tre gusci: l'esterno - la dura madre, l'interno - il morbido e tra di essi - il sottile aracnoide. Lo spazio tra le membrane è pieno di liquido cerebrospinale (cerebrospinale), che è simile nella composizione al plasma sanguigno, prodotto nelle cavità intracerebrali (ventricoli del cervello) e circola nel cervello e nel midollo spinale, fornendolo con sostanze nutritive e altri fattori necessari per l'attività vitale.

L'apporto di sangue al cervello è fornito principalmente dalle arterie carotidi; alla base del cervello, sono divisi in grandi rami che vanno alle sue varie sezioni. Anche se il peso del cervello è solo il 2,5% del peso corporeo, costantemente, giorno e notte, riceve il 20% del sangue circolante nel corpo e, di conseguenza, l'ossigeno. Le riserve di energia del cervello stesso sono estremamente piccole, quindi è estremamente dipendente dalla fornitura di ossigeno. Esistono meccanismi protettivi in ​​grado di supportare il flusso sanguigno cerebrale in caso di sanguinamento o lesioni. Una caratteristica della circolazione cerebrale è anche la presenza dei cosiddetti. barriera emato-encefalica. Consiste di diverse membrane, che limitano la permeabilità delle pareti vascolari e il flusso di molti composti dal sangue nella sostanza del cervello; quindi, questa barriera svolge funzioni protettive. Ad esempio, molte sostanze medicinali non penetrano attraverso di esso.

CELLULE DEL CERVELLO

Le cellule del SNC sono chiamate neuroni; la loro funzione è l'elaborazione delle informazioni. Nel cervello umano da 5 a 20 miliardi di neuroni. La struttura del cervello include anche cellule gliali, ci sono circa 10 volte di più dei neuroni. Glia riempie lo spazio tra i neuroni, formando la struttura di supporto del tessuto nervoso e svolge anche funzioni metaboliche e di altro tipo.

Il neurone, come tutte le altre cellule, è circondato da una membrana semipermeabile (al plasma). Due tipi di processi partono da un corpo cellulare: dendriti e assoni. La maggior parte dei neuroni ha molti dendriti ramificati, ma solo un assone. I dendriti sono in genere molto brevi, mentre la lunghezza dell'assone varia da pochi centimetri a diversi metri. Il corpo del neurone contiene il nucleo e altri organelli, come in altre cellule del corpo (vedi anche CELL).

Impulsi nervosi.

La trasmissione di informazioni nel cervello, così come il sistema nervoso nel suo insieme, viene effettuata per mezzo di impulsi nervosi. Si propagano nella direzione dal corpo cellulare alla parte terminale dell'assone, che può diramarsi formando una serie di terminazioni a contatto con altri neuroni attraverso una stretta fessura, la sinapsi; la trasmissione di impulsi attraverso la sinapsi è mediata da sostanze chimiche - neurotrasmettitori.

Un impulso nervoso di solito ha origine nei dendriti: sottili processi di ramificazione di un neurone che si specializzano nell'ottenere informazioni da altri neuroni e trasmetterlo al corpo di un neurone. Su dendrites e, in un numero minore, ci sono migliaia di sinapsi sul corpo della cella; è attraverso le sinapsi degli assoni, che trasportano informazioni dal corpo del neurone, lo trasmettono ai dendriti di altri neuroni.

La fine dell'assone, che costituisce la parte presinaptica della sinapsi, contiene piccole vescicole con un neurotrasmettitore. Quando l'impulso raggiunge la membrana presinaptica, il neurotrasmettitore dalla vescicola viene rilasciato nella fessura sinaptica. La fine di un assone contiene un solo tipo di neurotrasmettitore, spesso in combinazione con uno o più tipi di neuromodulatori (vedi sotto Neurochimica cerebrale).

Il neurotrasmettitore rilasciato dalla membrana presinaptica assonica si lega ai recettori sui dendriti del neurone postsinaptico. Il cervello utilizza una varietà di neurotrasmettitori, ognuno dei quali è associato al suo particolare recettore.

I recettori sui dendriti sono collegati a canali in una membrana postsinaptica semipermeabile che controlla il movimento degli ioni attraverso la membrana. A riposo, il neurone ha un potenziale elettrico di 70 millivolt (potenziale di riposo), mentre il lato interno della membrana è caricato negativamente rispetto al esterno. Sebbene ci siano diversi mediatori, tutti hanno un effetto stimolante o inibitorio sul neurone postsinaptico. L'effetto stimolante è realizzato attraverso il potenziamento del flusso di determinati ioni, principalmente sodio e potassio, attraverso la membrana. Di conseguenza, la carica negativa della superficie interna diminuisce - si verifica la depolarizzazione. L'effetto frenante si verifica principalmente attraverso i cambiamenti nel flusso di potassio e cloruri, di conseguenza, la carica negativa della superficie interna diventa più grande di quella a riposo e si verifica l'iperpolarizzazione.

La funzione del neurone è quella di integrare tutte le influenze percepite attraverso le sinapsi sul suo corpo e sui dendriti. Poiché questi effetti possono essere eccitatori o inibitori e non coincidono nel tempo, il neurone deve calcolare l'effetto totale dell'attività sinaptica in funzione del tempo. Se l'effetto eccitatorio prevale su quello inibitorio e la depolarizzazione della membrana supera il valore soglia, viene attivata una certa parte della membrana del neurone - nell'area di base del suo assone (tubercolo assonale). Qui, a seguito dell'apertura di canali per gli ioni sodio e potassio, sorge un potenziale d'azione (impulso nervoso).

Questo potenziale si estende ulteriormente lungo l'assone fino alla sua estremità ad una velocità da 0,1 m / sa 100 m / s (più spesso è l'assone, maggiore è la velocità di conduzione). Quando il potenziale d'azione raggiunge la fine dell'assone, viene attivato un altro tipo di canali ionici, a seconda della differenza di potenziale, i canali del calcio. Secondo loro, il calcio entra nell'assone, che porta alla mobilizzazione delle vescicole con il neurotrasmettitore, che si avvicinano alla membrana presinaptica, si fondono con esso e rilasciano il neurotrasmettitore nella sinapsi.

Mielina e cellule gliali.

Molti assoni sono ricoperti da una guaina di mielina, che è formata da una membrana ripetutamente intrecciata di cellule gliali. La mielina consiste principalmente di lipidi, che conferiscono un aspetto caratteristico alla sostanza bianca del cervello e del midollo spinale. Grazie alla guaina mielinica, la velocità di esecuzione del potenziale d'azione lungo l'assone aumenta, poiché gli ioni possono muoversi attraverso la membrana assonica solo in punti non coperti da mielina - il cosiddetto intercettazioni Ranvier. Tra intercettazioni, gli impulsi sono condotti lungo la guaina mielinica come attraverso un cavo elettrico. Poiché l'apertura del canale e il passaggio degli ioni attraverso di esso richiede un certo tempo, l'eliminazione dell'apertura costante dei canali e la limitazione del loro campo d'azione a piccole aree di membrana non coperte da mielina accelera la conduzione degli impulsi lungo l'assone di circa 10 volte.

Solo una parte delle cellule gliali è coinvolta nella formazione della guaina mielinica dei nervi (cellule di Schwann) o dei tratti nervosi (oligodendrociti). Molte più cellule gliali (astrociti, microgliociti) svolgono altre funzioni: formano lo scheletro di supporto del tessuto nervoso, provvedono ai suoi bisogni metabolici e recuperano da lesioni e infezioni.

COME FUNZIONA IL CERVELLO

Considera un semplice esempio. Cosa succede quando prendiamo una matita sul tavolo? La luce riflessa dalla matita si concentra nell'occhio con l'obiettivo ed è diretta alla retina, dove appare l'immagine della matita; viene percepito dalle cellule corrispondenti, da cui il segnale passa ai principali nuclei trasmettitori sensoriali del cervello, situati nel talamo (tubercolo visivo), principalmente in quella parte del corpo che si chiama corpo laterale del genicolato. Sono attivati ​​numerosi neuroni che rispondono alla distribuzione della luce e dell'oscurità. Gli assoni dei neuroni del corpo a gomito laterale vanno alla corteccia visiva primaria, situata nel lobo occipitale dei grandi emisferi. Gli impulsi che provengono dal talamo in questa parte della corteccia si trasformano in una complessa sequenza di scariche di neuroni corticali, alcuni dei quali reagiscono al confine tra la matita e il tavolo, altri agli angoli nell'immagine a matita, ecc. Dalla corteccia visiva primaria, l'informazione sugli assoni entra nella corteccia visiva associativa, dove avviene il riconoscimento del pattern, in questo caso una matita. Il riconoscimento in questa parte della corteccia si basa sulla conoscenza precedentemente accumulata dei contorni esterni degli oggetti.

La pianificazione del movimento (cioè, prendendo una matita) si verifica probabilmente nella corteccia dei lobi frontali degli emisferi cerebrali. Nella stessa area della corteccia si trovano i motoneuroni che danno comandi ai muscoli della mano e delle dita. L'avvicinamento della mano alla matita è controllato dal sistema visivo e dagli interecettori che percepiscono la posizione dei muscoli e delle articolazioni, l'informazione da cui entra nel sistema nervoso centrale. Quando prendiamo una matita in mano, i ricettori sulla punta delle dita, che percepiscono la pressione, ci dicono se le dita tengono bene la matita e quale dovrebbe essere lo sforzo per trattenerla. Se vogliamo scrivere il nostro nome a matita, abbiamo bisogno di attivare altre informazioni memorizzate nel cervello che forniscono questo movimento più complesso, e il controllo visivo aiuterà ad aumentare la sua precisione.

Nell'esempio sopra, si può vedere che eseguire un'azione abbastanza semplice coinvolge estese aree del cervello che si estendono dalla corteccia alle regioni sottocorticali. Con comportamenti più complessi associati alla parola o al pensiero, vengono attivati ​​altri circuiti neurali che coprono aree del cervello ancora più vaste.

PARTI PRINCIPALI DEL CERVELLO

Il cervello può essere diviso in tre parti principali: il proencefalo, il tronco cerebrale e il cervelletto. Nel proencefalo vengono secreti gli emisferi cerebrali, il talamo, l'ipotalamo e la ghiandola pituitaria (una delle ghiandole neuroendocrine più importanti). Il tronco cerebrale è costituito dal midollo allungato, dal ponte (pons) e dal mesencefalo.

Grandi emisferi

- La maggior parte del cervello, la componente negli adulti circa il 70% del suo peso. Normalmente, gli emisferi sono simmetrici. Sono interconnessi da un massiccio fascio di assoni (corpo calloso), che fornisce lo scambio di informazioni.

Ogni emisfero è costituito da quattro lobi: frontale, parietale, temporale e occipitale. La corteccia dei lobi frontali contiene centri che regolano l'attività locomotoria, così come, probabilmente, i centri di pianificazione e previsione. Nella corteccia dei lobi parietali, situati dietro il frontale, ci sono zone di sensazioni corporee, tra cui il senso del tatto e la sensazione articolare e muscolare. Lateralmente al lobo parietale confina con il temporale, in cui si trova la corteccia uditiva primaria, così come i centri del discorso e altre funzioni superiori. La parte posteriore del cervello occupa il lobo occipitale situato sopra il cervelletto; la sua corteccia contiene zone di sensazioni visive.

Le aree della corteccia che non sono direttamente correlate alla regolazione dei movimenti o all'analisi delle informazioni sensoriali sono chiamate corteccia associativa. In queste zone specializzate, si formano collegamenti associativi tra diverse aree e parti del cervello e le informazioni provenienti da esse sono integrate. La corteccia associativa fornisce funzioni così complesse come l'apprendimento, la memoria, la parola e il pensiero.

Strutture sottocorticali

Sotto la corteccia giace una serie di importanti strutture cerebrali, o nuclei, che sono gruppi di neuroni. Questi includono il talamo, i gangli della base e l'ipotalamo. Il talamo è il principale nucleo trasmittente sensoriale; riceve informazioni dai sensi e, a sua volta, li inoltra alle parti appropriate della corteccia sensoriale. Ci sono anche zone non specifiche che sono associate a quasi tutta la corteccia e, probabilmente, forniscono i processi della sua attivazione e mantengono la veglia e l'attenzione. I gangli basali sono un insieme di nuclei (il cosiddetto guscio, una sfera pallida e il nucleo caudato) che sono coinvolti nella regolazione dei movimenti coordinati (avviarli e fermarli).

L'ipotalamo è una piccola area alla base del cervello che si trova sotto il talamo. Ricco di sangue, l'ipotalamo è un importante centro che controlla le funzioni omeostatiche del corpo. Produce sostanze che regolano la sintesi e il rilascio di ormoni ipofisari (vedi anche IPOFISI). Nell'ipotalamo ci sono molti nuclei che svolgono funzioni specifiche, come la regolazione del metabolismo dell'acqua, la distribuzione del grasso immagazzinato, la temperatura corporea, il comportamento sessuale, il sonno e la veglia.

Stem del cervello

situato alla base del cranio. Collega il midollo spinale con il proencefalo e consiste nel midollo allungato, nel ponte, nel medio e nel diencefalo.

Attraverso il cervello medio e intermedio, così come attraverso l'intero tronco, passano i percorsi motori che portano al midollo spinale, così come alcuni percorsi sensibili dal midollo spinale alle parti periferiche del cervello. Sotto il mesencefalo c'è un ponte collegato da fibre nervose al cervelletto. La parte più bassa del tronco - il midollo allungato - passa direttamente nel midollo spinale. Nel midollo allungato sono localizzati i centri che regolano l'attività del cuore e della respirazione, a seconda delle circostanze esterne, e controllano anche la pressione sanguigna, la motilità gastrica e intestinale.

A livello del tronco, i percorsi che collegano ciascun emisfero cerebrale con il cervelletto si intersecano. Pertanto, ciascuno degli emisferi controlla il lato opposto del corpo ed è collegato all'emisfero opposto del cervelletto.

cervelletto

situato sotto i lobi occipitali degli emisferi cerebrali. Attraverso i percorsi del ponte, è collegato alle parti sovrastanti del cervello. Il cervelletto regola i sottili movimenti automatici, coordinando l'attività di vari gruppi muscolari durante l'esecuzione di atti comportamentali stereotipati; controlla costantemente anche la posizione della testa, del busto e degli arti, vale a dire coinvolto nel mantenimento dell'equilibrio. Secondo gli ultimi dati, il cervelletto gioca un ruolo molto significativo nella formazione delle capacità motorie, aiutando a memorizzare la sequenza dei movimenti.

Altri sistemi

Il sistema limbico è una vasta rete di regioni cerebrali interconnesse che regolano gli stati emotivi, oltre a fornire apprendimento e memoria. I nuclei che formano il sistema limbico includono l'amigdala e l'ippocampo (incluso nel lobo temporale), così come l'ipotalamo e il cosiddetto nucleo. setto trasparente (situato nelle regioni sottocorticali del cervello).

La formazione reticolare è una rete di neuroni che si estende attraverso l'intero tronco fino al talamo e ulteriormente connessa con vaste aree della corteccia. Partecipa alla regolazione del sonno e della veglia, mantiene lo stato attivo della corteccia e contribuisce al centro dell'attenzione su determinati oggetti.

CERVELLO DI ATTIVITÀ ELETTRICA

Con l'aiuto di elettrodi posizionati sulla superficie della testa o introdotti nella sostanza del cervello, è possibile fissare l'attività elettrica del cervello a causa degli scarichi delle sue cellule. La registrazione dell'attività elettrica del cervello con elettrodi sulla superficie della testa è chiamata elettroencefalogramma (EEG). Non consente di registrare lo scarico di un singolo neurone. Solo come risultato dell'attività sincronizzata di migliaia o milioni di neuroni, le oscillazioni evidenti (onde) appaiono sulla curva registrata.

Con la registrazione costante sull'EEG, i cambiamenti ciclici sono rivelati, riflettendo il livello generale di attività dell'individuo. Nello stato di veglia attiva, l'EEG cattura onde beta non ritmiche di bassa ampiezza. In uno stato di veglia rilassata con gli occhi chiusi, prevalgono le onde alfa con una frequenza di 7-12 cicli al secondo. L'insorgenza del sonno è indicata dalla comparsa di onde lente ad alta ampiezza (onde delta). Durante i periodi di sogno, le onde beta riappaiono sull'EEG, e sulla base dell'EEG si può creare una falsa impressione che la persona sia sveglia (da qui il termine "sonno paradossale"). I sogni sono spesso accompagnati da rapidi movimenti oculari (con palpebre chiuse). Pertanto, il sogno è anche chiamato sonno con movimenti oculari rapidi (vedi anche SLEEP). L'EEG consente di diagnosticare alcune malattie del cervello, in particolare l'epilessia (vedi EPILESSIA).

Se si registra l'attività elettrica del cervello durante l'azione di uno stimolo particolare (visivo, uditivo o tattile), è possibile identificare il cosiddetto. potenziali evocati - scarichi sincroni di un certo gruppo di neuroni, che si manifestano in risposta a uno specifico stimolo esterno. Lo studio dei potenziali evocati ha permesso di chiarire la localizzazione delle funzioni cerebrali, in particolare, per collegare la funzione del linguaggio con determinate aree dei lobi temporali e frontali. Questo studio aiuta anche a valutare lo stato dei sistemi sensoriali nei pazienti con sensibilità ridotta.

CERVELLO NEUROCHEMISTRY

I neurotrasmettitori più importanti del cervello sono acetilcolina, norepinefrina, serotonina, dopamina, glutammato, acido gamma-aminobutirrico (GABA), endorfine ed encefaline. Oltre a queste sostanze ben note, un gran numero di altre che non sono ancora state studiate probabilmente funzionano nel cervello. Alcuni neurotrasmettitori agiscono solo in certe aree del cervello. Pertanto, endorfine e encefaline si trovano solo nelle vie che conducono gli impulsi del dolore. Altri mediatori, come il glutammato o il GABA, sono più ampiamente distribuiti.

L'azione dei neurotrasmettitori.

Come già notato, i neurotrasmettitori, agendo sulla membrana postsinaptica, cambiano la sua conduttività per gli ioni. Spesso ciò avviene attraverso l'attivazione nel neurone postsinaptico del secondo sistema "mediatore", ad esempio, adenosina monofosfato ciclico (cAMP). L'azione dei neurotrasmettitori può essere modificata sotto l'influenza di un'altra classe di sostanze neurochimiche - neuromodulatori peptidici. Rilasciati dalla membrana presinaptica contemporaneamente al mediatore, hanno la capacità di migliorare o altrimenti alterare l'effetto dei mediatori sulla membrana postsinaptica.

Il sistema endorfine-encefalina scoperto di recente è importante. Encefaline e endorfine sono piccoli peptidi che inibiscono la conduzione degli impulsi del dolore legandosi ai recettori nel sistema nervoso centrale, comprese le zone più alte della corteccia. Questa famiglia di neurotrasmettitori sopprime la percezione soggettiva del dolore.

Droghe psicoattive

- sostanze che possono legarsi specificamente a determinati recettori nel cervello e causare cambiamenti comportamentali. Identificato diversi meccanismi della loro azione. Alcuni influenzano la sintesi di neurotrasmettitori, altri - sul loro accumulo e rilascio da vescicole sinaptiche (ad esempio, l'anfetamina causa un rapido rilascio di noradrenalina). Il terzo meccanismo è quello di legarsi ai recettori e imitare l'azione di un neurotrasmettitore naturale, ad esempio, l'effetto dell'LSD (dietilamide dell'acido lisergico) è spiegato dalla sua capacità di legarsi ai recettori della serotonina. Il quarto tipo di azione farmacologica è il blocco del recettore, cioè antagonismo con neurotrasmettitori. Tali antipsicotici ampiamente utilizzati come fenotiazine (ad esempio clorpromazina o aminazina) bloccano i recettori della dopamina e quindi riducono l'effetto della dopamina sui neuroni postsinaptici. Infine, l'ultimo meccanismo d'azione comune è l'inibizione dell'inattivazione del neurotrasmettitore (molti pesticidi impediscono l'inattivazione dell'acetilcolina).

È noto da tempo che la morfina (un prodotto di papavero da oppio purificato) non ha solo un effetto analgesico pronunciato (analgesico), ma anche la capacità di causare euforia. Questo è il motivo per cui viene usato come droga. L'azione della morfina è associata alla sua capacità di legarsi ai recettori sul sistema endorfina-encefalina umano (vedi anche DROGA). Questo è solo uno dei tanti esempi del fatto che una sostanza chimica di diversa origine biologica (in questo caso, di origine vegetale) è in grado di influenzare il funzionamento del cervello di animali e umani, interagendo con specifici sistemi di neurotrasmettitori. Un altro esempio ben noto è il curaro, derivato da una pianta tropicale e capace di bloccare i recettori dell'acetilcolina. Gli indiani del Sud America ungevano punte di freccia di curaro, usando il suo effetto paralizzante associato al blocco della trasmissione neuromuscolare.

STUDI DI CERVELLO

La ricerca sul cervello è difficile per due ragioni principali. Innanzitutto, il cervello, protetto in modo sicuro dal cranio, non è accessibile direttamente. In secondo luogo, i neuroni del cervello non si rigenerano, quindi qualsiasi intervento può portare a danni irreversibili.

Nonostante queste difficoltà, la ricerca sul cervello e alcune forme del suo trattamento (in primis, l'intervento neurochirurgico) sono note fin dall'antichità. I reperti archeologici mostrano che già nell'antichità, l'uomo incrinava il cranio per ottenere l'accesso al cervello. Una ricerca cerebrale particolarmente intensa è stata condotta durante i periodi di guerra, quando è stato possibile osservare una serie di lesioni alla testa.

Il danno cerebrale a causa di un infortunio nella parte anteriore o di una ferita subita in tempo di pace è una sorta di esperimento in cui alcune parti del cervello vengono distrutte. Poiché questa è l'unica forma possibile di un "esperimento" sul cervello umano, un altro importante metodo di ricerca sono stati gli esperimenti sugli animali da laboratorio. Osservando le conseguenze comportamentali o fisiologiche del danno a una particolare struttura cerebrale, si può giudicare la sua funzione.

L'attività elettrica del cervello negli animali da esperimento viene registrata usando elettrodi posizionati sulla superficie della testa o del cervello o introdotti nella sostanza del cervello. Pertanto, è possibile determinare l'attività di piccoli gruppi di neuroni o singoli neuroni, nonché di identificare i cambiamenti nei flussi ionici attraverso la membrana. Con l'aiuto di un dispositivo stereotassico che consente di inserire l'elettrodo in un punto specifico del cervello, vengono esaminate le sezioni di profondità inaccessibili.

Un altro approccio è quello di rimuovere piccole aree del tessuto cerebrale vivente, dopo di che la sua esistenza viene mantenuta come una fetta collocata in un mezzo nutritivo, o le cellule vengono separate e studiate in colture cellulari. Nel primo caso, è possibile esplorare l'interazione dei neuroni, nel secondo l'attività delle singole cellule.

Quando si studia l'attività elettrica dei singoli neuroni o dei loro gruppi in diverse aree del cervello, l'attività iniziale viene solitamente prima registrata, quindi viene determinato l'effetto di un particolare effetto sulla funzione delle cellule. Secondo un altro metodo, un impulso elettrico viene applicato attraverso l'elettrodo impiantato per attivare artificialmente i neuroni più vicini. Quindi puoi studiare gli effetti di certe aree del cervello sulle sue altre aree. Questo metodo di stimolazione elettrica era utile nello studio dei sistemi di attivazione dello stelo che passavano attraverso il mesencefalo; si ricorre anche a quando si cerca di capire come i processi di apprendimento e memoria avvengono a livello sinaptico.

Cento anni fa è diventato chiaro che le funzioni degli emisferi sinistro e destro sono diverse. Un chirurgo francese P. Brock, guardando i pazienti con un incidente cerebrovascolare (ictus), ha scoperto che solo i pazienti con danni all'emisfero sinistro soffrivano di disturbi del linguaggio. Ulteriori studi sulla specializzazione degli emisferi sono stati continuati utilizzando altri metodi, ad esempio la registrazione EEG e potenziali evocati.

Negli ultimi anni sono state utilizzate tecnologie complesse per ottenere immagini (visualizzazioni) del cervello. Pertanto, la tomografia computerizzata (CT) ha rivoluzionato la neurologia clinica, consentendo di ottenere l'immagine dettagliata (a strati) in vivo delle strutture cerebrali. Un altro metodo di imaging - tomografia ad emissione di positroni (PET) - fornisce un quadro dell'attività metabolica del cervello. In questo caso, un radioisotopo di breve durata viene introdotto in una persona, che si accumula in diverse parti del cervello, e più aumenta la sua attività metabolica. Con l'aiuto della PET, è stato anche dimostrato che le funzioni vocali della maggior parte di quelle esaminate sono associate all'emisfero sinistro. Poiché il cervello lavora utilizzando un numero enorme di strutture parallele, il PET fornisce tali informazioni sulle funzioni cerebrali che non possono essere ottenute con elettrodi singoli.

Di norma, la ricerca sul cervello viene condotta utilizzando una combinazione di metodi. Per esempio, il neurobiologo americano R. Sperri, con gli impiegati, ha usato come procedura di trattamento per tagliare il corpo calloso (fascio di assoni che collega entrambi gli emisferi) in alcuni pazienti con epilessia. Successivamente, in questi pazienti con un cervello "diviso", è stata studiata la specializzazione emisferica. È stato rilevato che per il linguaggio e altre funzioni logiche e analitiche, l'emisfero dominante dominante (di solito a sinistra) è responsabile, mentre l'emisfero non dominante analizza i parametri spazio-temporali dell'ambiente esterno. Quindi, viene attivato quando ascoltiamo la musica. Un'immagine a mosaico dell'attività cerebrale suggerisce che ci sono numerose aree specializzate all'interno della corteccia e delle strutture sottocorticali; l'attività simultanea di queste aree conferma il concetto del cervello come un dispositivo di elaborazione con elaborazione dati parallela.

Con l'avvento di nuovi metodi di ricerca, è probabile che le idee sulle funzioni cerebrali cambino. L'uso di dispositivi che ci permettono di ottenere una "mappa" dell'attività metabolica di varie parti del cervello, nonché l'uso di approcci genetici molecolari, dovrebbe approfondire la nostra conoscenza dei processi che si verificano nel cervello. Vedi anche neuropsicologia.

ANATOMIA COMPARATA

In diversi tipi di vertebrati, il cervello è notevolmente simile. Se facciamo confronti a livello di neuroni, troviamo una netta somiglianza di tali caratteristiche come i neurotrasmettitori usati, le fluttuazioni nelle concentrazioni di ioni, i tipi di cellule e le funzioni fisiologiche. Le differenze fondamentali si rivelano solo rispetto agli invertebrati. I neuroni invertebrati sono molto più grandi; spesso sono collegati tra loro non da sostanze chimiche, ma da sinapsi elettriche, che raramente si trovano nel cervello umano. Nel sistema nervoso degli invertebrati vengono rilevati alcuni neurotrasmettitori che non sono caratteristici dei vertebrati.

Tra i vertebrati, le differenze nella struttura del cervello si riferiscono principalmente al rapporto delle sue singole strutture. Valutando le somiglianze e le differenze nel cervello di pesci, anfibi, rettili, uccelli, mammiferi (inclusi gli umani), è possibile derivare diversi modelli generali. Primo, tutti questi animali hanno la stessa struttura e le stesse funzioni dei neuroni. In secondo luogo, la struttura e le funzioni del midollo spinale e del tronco cerebrale sono molto simili. In terzo luogo, l'evoluzione dei mammiferi è accompagnata da un pronunciato aumento delle strutture corticali che raggiungono il massimo sviluppo nei primati. Negli anfibi, la corteccia costituisce solo una piccola parte del cervello, mentre negli umani è la struttura dominante. Si ritiene, tuttavia, che i principi del funzionamento del cervello di tutti i vertebrati siano quasi gli stessi. Le differenze sono determinate dal numero di connessioni interneurone e interazioni, che è il più alto, più il cervello è complesso. Vedi anche ANATOMIA COMPARATIVA.

PARTI PRINCIPALI DEL CERVELLO

Il cervello può essere diviso in tre parti principali: il proencefalo, il tronco cerebrale e il cervelletto. Nel proencefalo vengono secreti gli emisferi cerebrali, il talamo, l'ipotalamo e la ghiandola pituitaria (una delle ghiandole neuroendocrine più importanti). Il tronco cerebrale è costituito dal midollo allungato, dal ponte (pons) e dal mesencefalo. Gli emisferi cerebrali sono la parte più grande del cervello, costituendo circa il 70% del suo peso negli adulti. Normalmente, gli emisferi sono simmetrici. Sono interconnessi da un massiccio fascio di assoni (corpo calloso), che fornisce lo scambio di informazioni.

The HUMAN BRAIN è caratterizzato da un alto sviluppo dei grandi emisferi; costituiscono più di due terzi della sua massa e forniscono tali funzioni mentali come il pensiero, l'apprendimento, la memoria. Altre grandi strutture cerebrali sono mostrate su questa sezione trasversale: il cervelletto, il midollo allungato, il ponte e il mesencefalo.

Gli emisferi cerebrali sono la parte più grande del cervello, costituendo circa il 70% del suo peso negli adulti. Normalmente, gli emisferi sono simmetrici. Sono interconnessi da un massiccio fascio di assoni (corpo calloso), che fornisce lo scambio di informazioni.

Ogni emisfero è costituito da quattro lobi: frontale, parietale, temporale e occipitale. La corteccia dei lobi frontali contiene centri che regolano l'attività locomotoria, così come, probabilmente, i centri di pianificazione e previsione. Nella corteccia dei lobi parietali, situati dietro il frontale, ci sono zone di sensazioni corporee, tra cui il senso del tatto e la sensazione articolare e muscolare. Lateralmente al lobo parietale confina con il temporale, in cui si trova la corteccia uditiva primaria, così come i centri del discorso e altre funzioni superiori. La parte posteriore del cervello occupa il lobo occipitale situato sopra il cervelletto; la sua corteccia contiene zone di sensazioni visive.

Il CORA del CERVELLO copre la superficie dei grandi emisferi con i suoi numerosi solchi e circonvoluzioni, a causa delle quali l'area della corteccia aumenta in modo significativo. Ci sono zone associative della corteccia, così come la corteccia sensoriale e motoria - aree in cui i neutroni sono concentrati, che innervano varie parti del corpo.

Le aree della corteccia che non sono direttamente correlate alla regolazione dei movimenti o all'analisi delle informazioni sensoriali sono chiamate corteccia associativa. In queste zone specializzate, si formano collegamenti associativi tra diverse aree e parti del cervello e le informazioni provenienti da esse sono integrate. La corteccia associativa fornisce funzioni così complesse come l'apprendimento, la memoria, la parola e il pensiero. Strutture sottocorticali Sotto la corteccia giace una serie di importanti strutture cerebrali, o nuclei, che sono gruppi di neuroni. Questi includono il talamo, i gangli della base e l'ipotalamo. Il talamo è il principale nucleo trasmittente sensoriale; riceve informazioni dai sensi e, a sua volta, li inoltra alle parti appropriate della corteccia sensoriale. Ci sono anche zone non specifiche che sono associate a quasi tutta la corteccia e, probabilmente, forniscono i processi della sua attivazione e mantengono la veglia e l'attenzione. I gangli basali sono un insieme di nuclei (il cosiddetto guscio, una sfera pallida e il nucleo caudato) che sono coinvolti nella regolazione dei movimenti coordinati (avviarli e fermarli). L'ipotalamo è una piccola area alla base del cervello che si trova sotto il talamo. Ricco di sangue, l'ipotalamo è un importante centro che controlla le funzioni omeostatiche del corpo. Produce sostanze che regolano la sintesi e il rilascio di ormoni ipofisari. Nell'ipotalamo ci sono molti nuclei che svolgono funzioni specifiche, come la regolazione del metabolismo dell'acqua, la distribuzione del grasso immagazzinato, la temperatura corporea, il comportamento sessuale, il sonno e la veglia. Il tronco cerebrale si trova alla base del cranio. Collega il midollo spinale con il proencefalo e consiste nel midollo allungato, nel ponte, nel medio e nel diencefalo. Attraverso il cervello medio e intermedio, così come attraverso l'intero tronco, passano i percorsi motori che portano al midollo spinale, così come alcuni percorsi sensibili dal midollo spinale alle parti periferiche del cervello. Sotto il mesencefalo c'è un ponte collegato da fibre nervose al cervelletto. La parte più bassa del tronco - il midollo allungato - passa direttamente nel midollo spinale. Nel midollo allungato sono localizzati i centri che regolano l'attività del cuore e della respirazione, a seconda delle circostanze esterne, e controllano anche la pressione sanguigna, la motilità gastrica e intestinale. A livello del tronco, i percorsi che collegano ciascun emisfero cerebrale con il cervelletto si intersecano. Pertanto, ciascuno degli emisferi controlla il lato opposto del corpo ed è collegato all'emisfero opposto del cervelletto. Il cervelletto si trova sotto i lobi occipitali dei grandi emisferi. Attraverso i percorsi del ponte, è collegato alle parti sovrastanti del cervello. Il cervelletto regola i sottili movimenti automatici, coordinando l'attività di vari gruppi muscolari durante l'esecuzione di atti comportamentali stereotipati; controlla costantemente anche la posizione della testa, del busto e degli arti, vale a dire coinvolto nel mantenimento dell'equilibrio. Secondo gli ultimi dati, il cervelletto gioca un ruolo molto significativo nella formazione delle capacità motorie, aiutando a memorizzare la sequenza dei movimenti.

Il tronco cerebrale si trova alla base del cranio. Collega il midollo spinale con il proencefalo e consiste nel midollo allungato, nel ponte, nel medio e nel diencefalo.

Attraverso il cervello medio e intermedio, così come attraverso l'intero tronco, passano i percorsi motori che portano al midollo spinale, così come alcuni percorsi sensibili dal midollo spinale alle parti periferiche del cervello. Sotto il mesencefalo c'è un ponte collegato da fibre nervose al cervelletto. La parte più bassa del tronco - il midollo allungato - passa direttamente nel midollo spinale. Nel midollo allungato sono localizzati i centri che regolano l'attività del cuore e della respirazione, a seconda delle circostanze esterne, e controllano anche la pressione sanguigna, la motilità gastrica e intestinale.

A livello del tronco, i percorsi che collegano ciascun emisfero cerebrale con il cervelletto si intersecano. Pertanto, ciascuno degli emisferi controlla il lato opposto del corpo ed è collegato all'emisfero opposto del cervelletto.

Il cervelletto si trova sotto i lobi occipitali dei grandi emisferi. Attraverso i percorsi del ponte, è collegato alle parti sovrastanti del cervello. Il cervelletto regola i sottili movimenti automatici, coordinando l'attività di vari gruppi muscolari durante l'esecuzione di atti comportamentali stereotipati; controlla costantemente anche la posizione della testa, del busto e degli arti, vale a dire coinvolto nel mantenimento dell'equilibrio. Secondo gli ultimi dati, il cervelletto gioca un ruolo molto significativo nella formazione delle capacità motorie, aiutando a memorizzare la sequenza dei movimenti.

Altri sistemi Il sistema limbico è una vasta rete di regioni cerebrali interconnesse che regolano gli stati emotivi, oltre a fornire apprendimento e memoria. I nuclei che formano il sistema limbico includono l'amigdala e l'ippocampo (incluso nel lobo temporale), così come l'ipotalamo e il cosiddetto nucleo. setto trasparente (situato nelle regioni sottocorticali del cervello). La formazione reticolare è una rete di neuroni che si estende attraverso l'intero tronco fino al talamo e ulteriormente connessa con vaste aree della corteccia. Partecipa alla regolazione del sonno e della veglia, mantiene lo stato attivo della corteccia e contribuisce al centro dell'attenzione su determinati oggetti.

Parti principali del cervello

Il cervello può essere diviso in tre parti principali: il proencefalo, il tronco cerebrale e il cervelletto. Nel proencefalo vengono secreti gli emisferi cerebrali, il talamo, l'ipotalamo e la ghiandola pituitaria (una delle ghiandole neuroendocrine più importanti). Il tronco cerebrale è costituito dal midollo allungato, dal ponte (pons) e dal mesencefalo.

Gli emisferi cerebrali sono la parte più grande del cervello, costituendo circa il 70% del suo peso negli adulti. Normalmente, gli emisferi sono simmetrici. Sono interconnessi da un massiccio fascio di assoni (corpo calloso), che fornisce lo scambio di informazioni.

Ogni emisfero è costituito da quattro lobi: frontale, parietale, temporale e occipitale. La corteccia dei lobi frontali contiene centri che regolano l'attività locomotoria, così come, probabilmente, i centri di pianificazione e previsione. Nella corteccia dei lobi parietali, situati dietro il frontale, ci sono zone di sensazioni corporee, tra cui il senso del tatto e la sensazione articolare e muscolare. Lateralmente al lobo parietale confina con il temporale, in cui si trova la corteccia uditiva primaria, così come i centri del discorso e altre funzioni superiori. La parte posteriore del cervello occupa il lobo occipitale situato sopra il cervelletto; la sua corteccia contiene zone di sensazioni visive.

Le aree della corteccia che non sono direttamente correlate alla regolazione dei movimenti o all'analisi delle informazioni sensoriali sono chiamate corteccia associativa. In queste zone specializzate, si formano collegamenti associativi tra diverse aree e parti del cervello e le informazioni provenienti da esse sono integrate. La corteccia associativa fornisce funzioni così complesse come l'apprendimento, la memoria, la parola e il pensiero.

Strutture sottocorticali Sotto la corteccia giace una serie di importanti strutture cerebrali, o nuclei, che sono gruppi di neuroni. Questi includono il talamo, i gangli della base e l'ipotalamo. Il talamo è il principale nucleo trasmittente sensoriale; riceve informazioni dai sensi e, a sua volta, li inoltra alle parti appropriate della corteccia sensoriale. Ci sono anche zone non specifiche che sono associate a quasi tutta la corteccia e, probabilmente, forniscono i processi della sua attivazione e mantengono la veglia e l'attenzione. I gangli basali sono un insieme di nuclei (il cosiddetto guscio, una sfera pallida e il nucleo caudato) che sono coinvolti nella regolazione dei movimenti coordinati (avviarli e fermarli).

L'ipotalamo è una piccola area alla base del cervello che si trova sotto il talamo. Ricco di sangue, l'ipotalamo è un importante centro che controlla le funzioni omeostatiche del corpo. Produce sostanze che regolano la sintesi e il rilascio di ormoni ipofisari. Nell'ipotalamo ci sono molti nuclei che svolgono funzioni specifiche, come la regolazione del metabolismo dell'acqua, la distribuzione del grasso immagazzinato, la temperatura corporea, il comportamento sessuale, il sonno e la veglia.

Il tronco cerebrale si trova alla base del cranio. Collega il midollo spinale con il proencefalo e consiste nel midollo allungato, nel ponte, nel medio e nel diencefalo.

Attraverso il cervello medio e intermedio, così come attraverso l'intero tronco, passano i percorsi motori che portano al midollo spinale, così come alcuni percorsi sensibili dal midollo spinale alle parti periferiche del cervello. Sotto il mesencefalo c'è un ponte collegato da fibre nervose al cervelletto. La parte più bassa del tronco - il midollo allungato - passa direttamente nel midollo spinale. Nel midollo allungato sono localizzati i centri che regolano l'attività del cuore e della respirazione, a seconda delle circostanze esterne, e controllano anche la pressione sanguigna, la motilità gastrica e intestinale.

A livello del tronco, i percorsi che collegano ciascun emisfero cerebrale con il cervelletto si intersecano. Pertanto, ciascuno degli emisferi controlla il lato opposto del corpo ed è collegato all'emisfero opposto del cervelletto.

Il cervelletto si trova sotto i lobi occipitali dei grandi emisferi. Attraverso i percorsi del ponte, è collegato alle parti sovrastanti del cervello. Il cervelletto regola i sottili movimenti automatici, coordinando l'attività di vari gruppi muscolari durante l'esecuzione di atti comportamentali stereotipati; controlla costantemente anche la posizione della testa, del busto e degli arti, vale a dire coinvolto nel mantenimento dell'equilibrio. Secondo gli ultimi dati, il cervelletto gioca un ruolo molto significativo nella formazione delle capacità motorie, aiutando a memorizzare la sequenza dei movimenti.

Altri sistemi Il sistema limbico è una vasta rete di regioni cerebrali interconnesse che regolano gli stati emotivi, oltre a fornire apprendimento e memoria. I nuclei che formano il sistema limbico includono l'amigdala e l'ippocampo (incluso nel lobo temporale), così come l'ipotalamo e il cosiddetto nucleo. setto trasparente (situato nelle regioni sottocorticali del cervello).

La formazione reticolare è una rete di neuroni che si estende attraverso l'intero tronco fino al talamo e ulteriormente connessa con vaste aree della corteccia. Partecipa alla regolazione del sonno e della veglia, mantiene lo stato attivo della corteccia e contribuisce al centro dell'attenzione su determinati oggetti.

Parti principali del cervello

Il cervello umano può essere diviso in tre parti principali:

Materia grigia e bianca

La sostanza del cervello è composta da aree grigie e bianche. Le aree grigie sono gruppi di neuroni. Ce ne sono più di 100 miliardi e sono impegnati nell'elaborazione delle informazioni. La materia bianca del cervello è l'assone. Attraverso di loro hanno trasmesso informazioni elaborate dai neuroni. La materia grigia è anche concentrata nella parte interna del midollo spinale.

Nutrizione del cervello

Per il normale funzionamento, il cervello ha bisogno di nutrizione. A differenza di altre cellule del corpo, le cellule cerebrali sono in grado di processare solo il glucosio. Anche il cervello ha bisogno di ossigeno. Senza di esso, i mitocondri non saranno in grado di produrre abbastanza energia. Ma dal momento che il sangue fornisce glucosio e ossigeno al cervello, nulla dovrebbe interferire con il normale flusso sanguigno per mantenere la salute del cervello. Se il sangue smette di fluire nel cervello, dopo dieci secondi, la persona perde conoscenza. Anche se il peso del cervello è solo il 2,5% del peso corporeo, costantemente, giorno e notte, riceve il 20% del sangue circolante nel corpo e la corrispondente quantità di ossigeno.

Corteccia cerebrale

La profonda piega divide il cervello in due emisferi.

La corteccia cerebrale è uno strato di materia grigia tra 1 e 5 mm di spessore, che copre gli emisferi cerebrali.

Solchi e spire aumentano la superficie della corteccia senza aumentare il volume del cranio. Quindi, negli esseri umani, circa 2/3 della superficie dell'intera corteccia si trova in profondità nei solchi.

I due emisferi sono chiamati "nuova corteccia". È attraverso questa struttura che l'uomo ha sviluppato linguaggio, pensiero, coscienza e immaginazione. gli emisferi sono simmetrici. Gli emisferi sono interconnessi da un massiccio fascio di assoni - il corpo calloso, che prevede lo scambio di informazioni.

Ogni emisfero è costituito da quattro lobi. Si chiamano:

Ogni condivisione svolge determinate funzioni. Il lobo frontale controlla principalmente il movimento. Il lobo parietale elabora le informazioni dai sensi, fornisce tatto, temperatura, dolore ed è responsabile dell'orientamento nello spazio. Il lobo occipitale fornisce una visione, il lobo temporale fornisce l'udito. La corteccia associativa è una zona specializzata, grazie alla quale vengono eseguite funzioni così complesse come l'apprendimento, la memoria, la parola e il pensiero.

Centri cerebrali specializzati

Ci sono molti centri nel cervello che si specializzano in compiti specifici.

Il primo centro funzionale della corteccia cerebrale fu scoperto nel 1861 dallo scienziato francese Paul Brock (1824-1880). Durante l'autopsia, ha studiato il cervello di una persona che, a causa di un incidente, ha completamente perso il potere della parola. Capì perfettamente ciò che gli veniva detto, ma perse la capacità di pronunciare le parole. Broca ha attirato l'attenzione sul fatto che la zona frontale sinistra del cervello è stata danneggiata. Questo sito è chiamato l'area di Broca.

Qualche tempo dopo, lo scienziato tedesco Karl Vérnike (1848-1905) scoprì un altro centro funzionale responsabile del riconoscimento delle parole. Quando è danneggiato, una persona non può capire quello che ha sentito. Ha anche ricevuto il nome del suo scopritore - la zona di Wernicke.

Già scoperto più di cinquanta centri funzionali del cervello.

Sistema limbico

All'interno degli emisferi ci sono parti nascoste del cervello che sono importanti per il suo pieno funzionamento. Al suo centro è il talamo. Tutte le informazioni visive, gustative, uditive e tattili passano attraverso di essa prima di raggiungere la corteccia. Abbastanza basso è l'ipotalamo. Aiuta una persona a provare fame e sete, a provare emozioni. Di seguito è l'amigdala, a causa della quale una persona sente un senso di paura. Ma è anche molto importante per il processo di apprendimento e memoria.

L'ippocampo ricorda la sua forma a cavalluccio marino (ippocampo latino - cavalluccio marino) e svolge anche un ruolo cruciale per la memoria e le emozioni.

Tutti questi corpi sono solitamente combinati sotto il termine generale "sistema limbico".

Cervelletto - mini-cervello all'interno del cervello

Il cervelletto si trova nella parte posteriore del cervello. Assomiglia al cervello in miniatura, in quanto è diviso in due emisferi, ricoperti di giro.

Il cervelletto è responsabile della coordinazione motoria e dell'equilibrio.

Le persone con lesioni del cervelletto non sono paralizzate, ma perdono la capacità di mantenere l'equilibrio e di muoversi completamente.

Stem del cervello

Il tronco cerebrale si trova alla base del cranio. Collega il midollo spinale con il proencefalo. La parte più bassa del tronco va direttamente nella parte dorsale.

Il tronco cerebrale contiene numerosi centri di percorsi sensoriali e motori. Il tronco regola tali funzioni vitali come la respirazione e la circolazione del sangue.

A livello del tronco, i percorsi che collegano ciascun emisfero cerebrale con il cervelletto si intersecano. Pertanto, ciascuno degli emisferi controlla il lato opposto del corpo ed è collegato all'emisfero opposto del cervelletto.

Asimmetria cerebrale

Il Dr. Roger Sperry (1913 - 1994), insignito del Premio Nobel, per primo diede una spiegazione della specificità del funzionamento dei due lobi del cervello.

La metà sinistra del cervello è responsabile delle operazioni logiche, del conteggio, del sequenziamento, mentre l'emisfero destro controlla l'iniziativa e la creatività.

L'emisfero destro fa tutto in una volta, in modo olistico, cerca e stabilisce connessioni istintivamente, intuitivamente, preferisce le immagini, ci aiuta a capire le metafore e nella percezione dell'umorismo. La parte sinistra preferisce le sequenze, mette in evidenza i dettagli, cerca di classificare le informazioni, trae conclusioni concrete, stabilisce relazioni di causa-effetto, ama la grammatica e le parole.

La sinistra semplifica il mondo in modo che possa essere facilmente analizzato e influenzato di conseguenza. L'emisfero giusto conquista il mondo così com'è

Senza il lobo destro del cervello, una persona si trasformerebbe in un computer, in una macchina da contare. I tentativi degli scienziati di creare l'intelligenza artificiale si sono conclusi con un fallimento perché hanno modellato solo l'emisfero sinistro del cervello.

Entrambi gli emisferi svolgono funzioni altrettanto importanti.

L'emisfero destro del cervello controlla la metà sinistra del corpo e la sinistra - la metà destra.

1. Qual è la differenza tra il flusso di corrente elettrica attraverso un conduttore metallico e il passaggio di un impulso nervoso?

2. Perché l'impulso elettrico non può essere trasmesso tra i neuroni?

3. Perché il cervello umano, con una massa di circa 1,5 kg, pesa solo 50 - 100 g?

Letteratura per il seminario sul tema numero 11 "Neurofisiologia"

Likhin A.F. Concetti di moderna scienza naturale. M.: Prospect, 2004. p 247 - 249.

Glebov R.N. Cervello, sinapsi e trasferimento di informazioni. M.: "Conoscenza", 1984.

Gorelov A. A. Concetti di scienza moderna. M.: Centro, 1998. Pag. 130 - 136.

Latash L.P., Astakhova VG Segreti di veglia e sonno. M.: "Conoscenza", 1978.

Sergeev B. F. Asimmetria cerebrale. M.: "Conoscenza", 1981.

La parte più importante del cervello

Risparmia tempo e non vedi annunci con Knowledge Plus

Risparmia tempo e non vedi annunci con Knowledge Plus

La risposta

La risposta è data

Razina2001

Corteccia cerebrale

Connetti Knowledge Plus per accedere a tutte le risposte. Rapidamente, senza pubblicità e pause!

Non perdere l'importante - connetti Knowledge Plus per vedere la risposta adesso.

Guarda il video per accedere alla risposta

Oh no!
Le visualizzazioni di risposta sono finite

Connetti Knowledge Plus per accedere a tutte le risposte. Rapidamente, senza pubblicità e pause!

Non perdere l'importante - connetti Knowledge Plus per vedere la risposta adesso.

Cervello - la base del lavoro armonioso del corpo

L'uomo è un organismo complesso costituito da molti organi uniti in un'unica rete, il cui lavoro è regolato in modo preciso e immacolato. La funzione principale di regolare il lavoro del corpo è il sistema nervoso centrale (SNC). Questo è un sistema complesso che include diversi organi e terminazioni e recettori nervosi periferici. L'organo più importante di questo sistema è il cervello, un complesso centro di calcolo responsabile del corretto funzionamento dell'intero organismo.

Informazioni generali sulla struttura del cervello

Stanno cercando di studiarlo per un lungo periodo, ma per tutto il tempo, gli scienziati non sono stati in grado di rispondere in modo accurato e inequivocabile al 100% alla domanda su che cos'è e su come funziona questo corpo. Molte funzioni sono state studiate, per alcuni ci sono solo ipotesi.

Visivamente, può essere diviso in tre parti principali: il tronco cerebrale, il cervelletto e gli emisferi cerebrali. Tuttavia, questa divisione non riflette l'intera versatilità del funzionamento di questo corpo. Più in dettaglio, queste parti sono divise in sezioni responsabili di alcune funzioni del corpo.

Dipartimento oblungo

Il sistema nervoso centrale di una persona è un meccanismo inseparabile. Un elemento di transizione liscio dal segmento spinale del sistema nervoso centrale è la sezione oblunga. Visivamente, può essere rappresentato come un cono tronco con una base in alto o una piccola testa di cipolla con rigonfiamenti divergenti da esso - i tessuti nervosi che si collegano con la sezione intermedia.

Ci sono tre diverse funzioni del dipartimento: sensoriale, riflessivo e conduttore. Il suo compito è di controllare i principali riflessi protettivi (riflesso del vomito, respiro, tosse) e i riflessi inconsci (battito del cuore, respiro, ammicchi, salivazione, secrezione di succo gastrico, deglutizione, metabolismo) Inoltre, il midollo è responsabile di sentimenti come l'equilibrio e la coordinazione dei movimenti.

mesencefalo

Il reparto successivo responsabile della comunicazione con il midollo spinale è quello centrale. Ma la funzione principale di questo dipartimento è l'elaborazione degli impulsi nervosi e la correzione della capacità di lavoro degli apparecchi acustici e del centro visivo umano. Dopo aver elaborato le informazioni ricevute, questa formazione dà segnali di impulso per rispondere agli stimoli: girare la testa verso il suono, cambiando la posizione del corpo in caso di pericolo. Altre funzioni includono la regolazione della temperatura corporea, il tono muscolare, l'eccitazione.

Il dipartimento centrale ha una struttura complessa. Ci sono 4 gruppi di cellule nervose: collinette, due delle quali sono responsabili della percezione visiva, le altre due dell'udito. Grappoli nervosi dello stesso tessuto conduttore del nervo, visivamente simili alle gambe, sono collegati tra loro e con altre parti del cervello e del midollo spinale. La dimensione totale del segmento non supera i 2 cm in un adulto.

Cervello intermedio

Ancora più complesso nella struttura e nella funzione del dipartimento. Anatomicamente, il diencefalo è diviso in più parti: la ghiandola pituitaria. Questa è una piccola appendice del cervello, che è responsabile della secrezione degli ormoni necessari e della regolazione del sistema endocrino del corpo.

La ghiandola pituitaria è condizionalmente divisa in più parti, ognuna delle quali svolge la sua funzione:

  • Adenoipofisi - un regolatore delle ghiandole endocrine periferiche.
  • La neuroipofisi è associata all'ipotalamo e accumula gli ormoni che produce.

ipotalamo

Una piccola area del cervello, la cui funzione più importante è il controllo della frequenza cardiaca e della pressione sanguigna nei vasi. Inoltre, l'ipotalamo è responsabile di una parte delle manifestazioni emotive producendo gli ormoni necessari per sopprimere situazioni stressanti. Un'altra importante funzione è il controllo della fame, della sazietà e della sete. Per finire, l'ipotalamo è il centro dell'attività sessuale e del piacere.

epitalamo

Il compito principale di questo dipartimento è la regolazione del ritmo biologico giornaliero. Con l'aiuto degli ormoni prodotti si influisce sulla durata del sonno notturno e sulla normale veglia durante il giorno. È l'epithalamo che adatta il nostro corpo alle condizioni del "giorno della luce" e divide le persone in "gufi" e "allodole". Un altro compito di epithalamus è la regolazione del metabolismo del corpo.

talamo

Questa formazione è molto importante per la corretta consapevolezza del mondo che ci circonda. È il talamo responsabile dell'elaborazione e dell'interpretazione degli impulsi dai recettori periferici. I dati provenienti dal nervo spettrale, dall'apparecchio acustico, dai recettori della temperatura corporea, dai recettori olfattivi e dai punti di dolore convergono in un dato centro di elaborazione delle informazioni.

Sezione posteriore

Come le precedenti divisioni, il cervello posteriore include sottosezioni. La parte principale è il cervelletto, il secondo è il ponte, che è un piccolo cuscino di tessuto nervoso per collegare il cervelletto con altri reparti e vasi sanguigni che alimentano il cervello.

cervelletto

Nella sua forma, il cervelletto assomiglia agli emisferi cerebrali, consiste di due parti, collegate da un "verme" - un complesso di tessuto nervoso conduttore. Gli emisferi principali sono composti da nuclei di cellule nervose o "materia grigia", assemblati per aumentare la superficie e il volume nelle pieghe. Questa parte si trova nella parte posteriore del cranio e occupa completamente la sua intera fossa posteriore.

La funzione principale di questo dipartimento è il coordinamento delle funzioni motorie. Tuttavia, il cervelletto non inizia i movimenti delle braccia o delle gambe - controlla solo l'accuratezza e la chiarezza, l'ordine in cui vengono eseguiti i movimenti, le capacità motorie e la postura.

Il secondo compito importante è la regolazione delle funzioni cognitive. Questi includono: attenzione, comprensione, consapevolezza della lingua, regolazione del sentimento di paura, senso del tempo, consapevolezza della natura del piacere.

Emisferi cerebrali cerebrali

La massa e il volume del cervello cadono sulla divisione finale o sui grandi emisferi. Ci sono due emisferi: la sinistra - la maggior parte dei quali è responsabile del pensiero analitico e delle funzioni vocali del corpo, e il diritto - il cui compito principale è il pensiero astratto e tutti i processi associati alla creatività e all'interazione con il mondo esterno.

La struttura del cervello finale

Gli emisferi cerebrali cerebrali sono la principale "unità di elaborazione" del sistema nervoso centrale. Nonostante la diversa "specializzazione" di questi segmenti sono complementari tra loro.

Gli emisferi cerebrali sono un complesso sistema di interazione tra i nuclei delle cellule nervose e i tessuti neuroconduttori che connettono le principali regioni cerebrali. La superficie superiore, chiamata corteccia, consiste di un numero enorme di cellule nervose. Si chiama materia grigia. Alla luce dello sviluppo evolutivo generale, la corteccia è la più giovane e più sviluppata formazione del sistema nervoso centrale e il più alto sviluppo è stato raggiunto negli esseri umani. È lei che è responsabile della formazione di funzioni neuro-psicologiche più elevate e di forme complesse di comportamento umano. Per aumentare l'area utilizzabile, la superficie degli emisferi si raccoglie in pieghe o giro. La superficie interna degli emisferi cerebrali consiste di materia bianca - i processi delle cellule nervose responsabili della conduzione degli impulsi nervosi e della comunicazione con il resto dei segmenti del SNC.

A turno, ciascuno degli emisferi è convenzionalmente diviso in 4 parti o lobi: occipitale, parietale, temporale e frontale.

Lobi occipitali

La funzione principale di questa parte condizionale è l'elaborazione dei segnali neurali dai centri visivi. È qui che le solite nozioni di colore, volume e altre proprietà tridimensionali di un oggetto visibile sono formate da stimoli luminosi.

Lobi parietali

Questo segmento è responsabile dell'evenienza del dolore e dell'elaborazione del segnale dai recettori termici del corpo. A questo il loro lavoro comune finisce.

Il lobo parietale dell'emisfero sinistro è responsabile della strutturazione dei pacchetti di informazioni, consente di operare con operatori logici, leggere e leggere. Anche quest'area forma la consapevolezza dell'intera struttura del corpo umano, la definizione delle parti destra e sinistra, la coordinazione dei singoli movimenti in un tutto unico.

Quello giusto è impegnato nella sintesi dei flussi di informazione che sono generati dai lobi occipitali e dal parietale sinistro. In questo sito si forma un'immagine tridimensionale generale della percezione dell'ambiente, della posizione e dell'orientamento spaziale, un errore di calcolo della prospettiva.

Lobi temporali

Questo segmento può essere paragonato al "disco rigido" del computer, una memoria a lungo termine delle informazioni. È qui che vengono memorizzati tutti i ricordi e le conoscenze di una persona raccolta durante la sua vita. Il lobo temporale destro è responsabile della memoria visiva - la memoria delle immagini. Sinistra: tutti i concetti e le descrizioni dei singoli oggetti sono memorizzati qui, l'interpretazione e il confronto delle immagini, i loro nomi e le loro caratteristiche hanno luogo.

Per quanto riguarda il riconoscimento vocale, entrambi i lobi temporali sono coinvolti in questa procedura. Tuttavia, le loro funzioni sono diverse. Se il lobo sinistro è progettato per riconoscere il carico semantico delle parole ascoltate, allora il lobo destro interpreta il colore dell'intonazione e il suo confronto con l'imitazione dell'altoparlante. Un'altra funzione di questa parte del cervello è la percezione e la decodifica degli impulsi neuronali che provengono dai recettori olfattivi del naso.

Lobi frontali

Questa parte è responsabile di tali proprietà della nostra coscienza come autostima critica, adeguatezza del comportamento, consapevolezza del grado di insensatezza delle azioni, umore. Il comportamento generale di una persona dipende anche dal corretto funzionamento dei lobi frontali del cervello, i disturbi portano all'inadeguatezza e all'asocialità delle azioni. Il processo di apprendimento, padronanza delle abilità, acquisizione dei riflessi condizionati dipende dal corretto funzionamento di questa parte del cervello. Ciò vale anche per il grado di attività e la curiosità di una persona, la sua iniziativa e la consapevolezza delle decisioni.

Per sistematizzare le funzioni di GM, sono presentati nella tabella:

Controlla i riflessi inconsci.

Controllo dell'equilibrio e coordinamento dei movimenti.

Regolazione della temperatura corporea, tono muscolare, agitazione, sonno.

Consapevolezza del mondo, elaborazione e interpretazione degli impulsi dai recettori periferici.

Elaborazione delle informazioni dai recettori periferici

Controllare la frequenza cardiaca e la pressione sanguigna. Produzione di ormoni Controlla lo stato di fame, sete, sazietà.

Regolazione del ritmo biologico giornaliero, regolazione del metabolismo del corpo.

Regolazione delle funzioni cognitive: attenzione, comprensione, consapevolezza del linguaggio, regolazione del senso della paura, senso del tempo, consapevolezza della natura del piacere.

Interpretazione del dolore e sensazioni di calore, responsabilità per la capacità di leggere e scrivere, capacità di pensiero logico e analitico.

Archiviazione a lungo termine delle informazioni. Interpretazione e confronto di informazioni, riconoscimento vocale ed espressioni facciali, decodifica di impulsi neuronali provenienti da recettori olfattivi.

Autostima critica, adeguatezza del comportamento, umore. Il processo di apprendimento, padronanza delle competenze, acquisizione dei riflessi condizionati.

L'interazione del cervello

Inoltre, ogni sezione del cervello ha i suoi compiti, l'intera struttura determina la coscienza, il carattere, il temperamento e altre caratteristiche psicologiche del comportamento. La formazione di alcuni tipi è determinata dal diverso grado di influenza e attività di un particolare segmento del cervello.

Il primo psicologico o collerico. La formazione di questo tipo di temperamento avviene con l'influenza dominante dei lobi frontali della corteccia e una delle sottoregioni del diencefalo - l'ipotalamo. Il primo genera intenzionalità e desiderio, la seconda sezione rafforza queste emozioni con gli ormoni necessari.

Un'interazione caratteristica delle divisioni, che determina il secondo tipo di temperamento - il sanguigno, è il lavoro congiunto dell'ipotalamo e dell'ippocampo (parte inferiore dei lobi temporali). La funzione principale dell'ippocampo è di conservare la memoria a breve termine e convertire la conoscenza risultante in un lungo periodo. Il risultato di questa interazione è un tipo di comportamento umano aperto, curioso e interessato.

Malinconico - il terzo tipo di comportamento temperamentale. Questa opzione è formata con l'interazione potenziata dell'ippocampo e un'altra formazione dei grandi emisferi - l'amigdala. Allo stesso tempo, l'attività della corteccia e dell'ipotalamo è ridotta. L'amigdala assume l'intero "botto" di segnali eccitanti. Ma poiché la percezione delle parti principali del cervello è inibita, la risposta all'eccitazione è bassa, che a sua volta influenza il comportamento.

A sua volta, formando forti connessioni, il lobo frontale è in grado di impostare un modello attivo di comportamento. Nell'interazione della corteccia di quest'area e delle tonsille, il sistema nervoso centrale genera solo impulsi altamente significativi, ignorando gli eventi insignificanti. Tutto ciò porta alla formazione di un modello di comportamento flemmatico: una persona forte e determinata con una consapevolezza degli obiettivi prioritari.

Ti Piace Di Epilessia